Изобретение относится к конструкционным металлическим материалам, в частности к титановым сплавам, применяемым при создании сварного оборудования, работающего в высоко агрессивных средах.

Известны сплавы ТІХ-80 (системы титан-железо-азот), [1]. а также ТІХ (системы титан-железо-кислородазот) [2]. Оба сплава для повышения прочности содержат в своем составе до 0.1% азота и до 0.6% кислорода поэтому относятся к плохо свариваемым сплавам и не могут применяться для изготовления сварных конструкций. Эти сплавы применяются для изготовления проволоки, болтов, оправ для очков, зубных протезов.

Известен высокопрочный, коррози-онностойкий титановый сплав Beta 21S (системы титан-молибденниобий-алюми-ний-кремний) [3]. Сплав обладает высоким сопротивлением окислению вплоть до 800°C, поэтому применяется в основном в качестве матрицы при создании композиционных материалов.

Известен сплав (системы титан-алюминий-ванадий-молибден-ниобий-цирконий-рений). Этот сплав применяется для изготовления высокопрочной титановой сварочной проволоки [4].

Известен титановый сплав (системы ти-тан-6 алюминия-7 ниобия) [5]. Сплав относится к двухфазным, термически нестабильным сплавам, способным упрочняться термической обработкой. Однако пластичность, особенно в термоупрочненном состоянии недостаточна и эффективность его применения в сварочной титановой аппаратуре невелика. Сплав предназначен для изготовления всевозможных имплантантов, а также медицинского инструмента и оборудования.

Наиболее близким по технической сущности v. достигаемому техническому результату является титановый сплав (системы тиган-5, 6 алюминия-4 олова-4 циркония-1 ниобия-0,25 молибдена-0,5 кремния-0,05 углерода и дополнительно 0.02 вольфрама)[6], выбранный в качестве прототипа. Сплав относится к α - сплавам средней прочности и используется в основном после термообработки.

Однако введение в сплав 4% олова резко снижает свариваемость этого сплава, ввиду образования большого количества пор в сварном соединении.

Упрочняющий эффект от легирования титана ниобием, введенным в количестве 0.25%. невелик. Для повышения коррозионной стойкости и ударной вязкости сплава содержание в нем ниобия должно быть не менее 3%.

Молибден, введенный в сплав в количестве 0,25%, не оказывает заметного влияния на его прочность и коррозионную стойкость, хотя в сочетании с оловом., вольфрамом и кремнием значительно повышает его жаропрочность.

Таким образом, данный сплав не может применяться для создания сварного оборудования, работающего в высокоагрессивных средах.

Задачей изобретения является изыскание такого состава сплава, который обладал бы высоким уровнем механический свойств, а также коррозионной стойкостью, превышающей коррозионную стойкость известных сплавов.

Эта задача решена созданием титанового сплава, содержащего алюминий, ниобий, цирконий, в который согласно изобретению, введено железо в количестве 0,8-2,3 мас.%, а указанные компоненты взяты в следующем процентном соотношении по массе: алюминий - 4,0-5,5; ниобий - 5,0-7,0; цирконий - 0.3-0.8; титан - остальное, при этом для получения оптимального сочетания высокой прочности и пластичности, а также высокой коррозионной стойкости отношение в нем ниобия к железу находится в пределах 2,9-7,0.

Известно, что алюминий и железо являются сильными упрочняющими элементами титана. Особенно эффективно упрочняющее действие алюминия проявляется до 5 мас.% и заметно спадает от 5 до 9% / 60 и 40 МПа на 1 % соответственно. Введение алюминия в количества более 6% заметно снижает термическую стабильность сплава, а также отрицательно влияет на пластические свойства, в результате образования интерматзл-лидной α_2 -фазы (Ti₃AI). Кроме того, содержание 6 мас.% приводит к снижению коррозионной стойкости. При содержании железа в сплаве более 2,5% возможно образование интерметаллидных соединений, а также охругчивающей софазы, что снижает пластичность сплава.

Введение ниобия в сплав повышает коррозионную стойкость титана благодаря образованию очень плотного и стабильного пассивного слоя на поверхности. Кроме этого, легирование сплава ниобием в указанных пределах значительно повышает ударную вязкость сплава как в отожженном, так и упрочненном состоянии (таблица 1). Это связано с его высокой растворимостью в а-фазе, что уменьшает гетерогенность его распределения, нивелируя тем самым отрицательное воздействие железа на пластические свойства сплава, а также на его коррозионную стойкость. Цирконий взят в небольших количествах как нейтральный упрочнитель для уменьшения отрицательного воздействия влияния газовых примесей, в частности кислорода, а также получения более мелкозернистой структуры в сплаве. Отношение ниобия к железу в пределах 2,9-7,0 выбрано исходя из получения оптимального сочетания высокой прочности и пластичности, а также высокой коррозионной стойкости. При отношении ниобия к железу меньше 2,9 (опыт 5 табл.1) наблюдается резкое повышение прочности и снижение пластичности. Для сохранения этой прочность, и повышения пластичности необходимо увеличить процент содержания ниобия до 9.7 мас.%, что приведет к резкому увеличению стоимости сплава. При отношении ниобия к железу больше 7,0 сплаБ имеет высокую пластичності, при малой прочности, значительно меньшей, чем в прототипе.

Для экспериментального исследования были изготовлены и опробованы пять опытных партий предложенного сплава, имеющих состав, указанный в табл.1. Ниже описаны примеры химических составов (в мас.%) сплавов, согласно изобретению.

Пример 1. Алюминий 3,5

Ниобий 4.0 отношение ниобия

к железу составляет - 8,0

Цирконий 0,2 Железо 0,5 Титан 91,8

При этом содержании легирующих элементов (ниже нижнего предела рекомендуемого состава, состав 2 табл.1) сплав обладает высокой пластичностью и невысокой прочностью (750-880 МПа), по сравнению с прототипом (880-1070 МПа).

Полученные результаты,

Относительное удлинение, относительное сужение, ударная вязкость возросли примерно в два раза, прочность сплава примерно в 1,2 раза ниже прочности прототипа, что не позволяет рекомендовать этот состав для промышленного применения.

Пример 2.

Алюминий 4,0

Ниобий 7.0 отношение ниобия

к железу составляет 3,0

Цирконий 0.3 Железо 2.3 Титан 86,4

При этом содержании легирующих элементов механические характеристики, как в состоянии после отжига, так и после термического упрочнения, значительно превосходят характеристики прототипа.

Полученные результаты.

Прочность сплава выросла на 60-80 МПа, относительное удлинение, относительное сужение, ударная вязкость - в два раза. Данный состав сплава может быть рекомендован к промышленному применению.

Пример 3.

Алюминий 5,0

Ниобий 6.5 отношение ниобия

к железу составляет 4,0

 Цирконий
 0.6

 Железо
 1.6

 Титан
 86.3

При этом содержании легирующих элементов, сплав имеет оптимальное сочетание механических характеристик, значительно превосходящих характеристики прототипа, как в состоянии после отжига, так и после термического упрочнения.

Полученные результаты

Прочность сплава выросла до 980-1200 МПа (в прототипе 880-1070 МПа), а относительное удлинение, относительное сужение и ударная вязкость выросли в два раза (табл.1 № 3). Сплав может быть рекомендован к промышленному применению.

Пример 4.

Алюминий 5,5

Ниобий 5,0 отношение ниобия

к железу составляет 6,3

Цирконий 0,8 Железо 0,8 Титан 87,9

При этом содержании легирующих элементов наблюдается хорошее сочетание прочностных и пластических характеристик сплава, которые значительно превосходят соответствующие характеристики прототипа.

Полученные результаты.

Прочность сплава выросла до 950-1180 МПа (в прототипе 880-1070 МПа), а относительное удлинение, относительное сужение и ударная вязкость выросли почти в два раза (табл.1 № 4). Сплав может быть рекомендован к промышленному применению.

Пример 5.

О, д бинимоил

Ниобий 8.0 отношение ниобия

к железу составляет 2,4

Цирконий 1,2 Железо 3,3 Титан 81,5

При этом содержании легирующих элементов (выше верхнего предела рекомендуемого состава, табл.1 № 5) эффективность легирования снижается, сплав обладает высокой прочностью и недостаточной пластичностью.

Полученные результаты.

Прочность сплава выросла до 1050-1250 МПа (в прототипе 880-1070 МПа), относительное удлинение, относительное сужение, ударная вязкость заметно снизились и находятся примерно на уровне соответствующих значений прототипа. Сплав не может быть рекомендован к промышленному применению.

В таблице 2 приведена коррозионная стойкость этих сплавов, коррозионная стойкость коррозионностойкого сплава титана 6 алюминия-7 ниобия, взятого в качестве аналога, а также серийно выпускаемых коррозионно-стойких титановых сплавов, определенная по стандартным методикам в наиболее распространенных средах. Анализ таблицы 2 показывает, что коррозионная стойкость сплава, взятого за прототип, находится на уровне коррозионной стойкости серийно выпускаемых сплавов и значительно уступает предлагаемому сплаву.

Применение рекомендуемого сплава, по сравнению с существующими, увеличивает прочность сварных конструкций, уменьшает их массу, дает возможность получить значительный экономический эффект, особенно при применении этого сплава в крупногабаритных аппаратах, работающих в агрессивных средах.

abausa 1

Номер		Отнош, ннобия к					
COCTABA	Титан	Аннимона	ниобия	цирконий	железо	железу	
1	91.8	3.5	4.0	0.2	0,5	8.0	
	86.4	4.0	7.0	0.3	2.3	3,0	
181	86,3	5.0	6,5	0.6	1,5	4.0	
IV	87.9	5,5	5.0	0.8	9.0	6.3	
V	81.5	6,0	8,0	1.2	3.3	2.4	
Прототип	84.4	5.6	1.0	4.0			

Продолжение табл. 1

Номер	Механические свойства									
	после отжига					после упрочнения				
	љ. МПа	Os. Mila	ð. %	¥. %	КСU, Дж/см²	α, MΠa	<i>G</i> s. МПа	ð. %	¥. %	KCU. Ax/cm²
1	750	680	22	55	110	880	800	20	46	90
н	940	875	20	50	90	1153	1085	17	41	80
tti	980	898	16	45	80	1200	1132	14.	35	70
IV	950	880	18	47	85	1185	1120	16	38	72
v	1050	950	7	14	45	1250	1164	6	12	37
Прототип	880	850	10	27	40	1070	924	8	19	32

Табянца 2

Cnnau	Скорость коррозии (ук), мм/год (300 часов)								
	5% H ₂ SO ₄ 50°C	5% H ₂ SO ₄ 100°C	10% H ₂ SO ₄ 50°C	10% H ₂ SO ₄ 100°C	20% H ₂ SO ₄ 50°C	20% H ₂ SO ₄ 100°C	5% HCI 100°C	10% HCI 100°C	Херактер разрушения
1	0,536	0,697	0.722	0,956	1.340	1,597	0.220	0.443	равномерный
11	0.484	0,618	0,632	0,830	0.962	1.042	0.207	0.418	равномерный
611	0.422	0.607	0,648	0.810	1,193	1,527	0.204	0,43	равномерный
N	0.434	0,621	0,694	0,929	1,502	1,838	0.201	0,410	равномерный
V	0,485	0,649	0.752	0,945	1,531	1.987	0.218	0.437	равномерный
ISAI7ND	2.039	2,704	3,511	4,093	4,310	4,922	1,410	2,487	равномерный
BT1	2,127	2.865	3,623	4,134	4.317	5.089	1,432	2,508	равномерный
AT3	3.025	4,112	4,537	5,432	6,021	6.810	3,297	3.485	избирательный
BT6	3.298	3,997	4.587	5,213	6.381	7,084	2,450	3.591	- интенсивный
Прото-	III			12-00-100-0	e sessocialità	Western I	ACTIVIDATE	Centración.	
THE	3,422	4,316	4.832	5,127	5,913	6,975	3.305	3,411	интенсивный