1

· "

№ *23*, .

·

, , ,

, $\mathbf{1}$ - ϕ_1 , $\mathbf{2}$ - ϕ_2 .

 $\mathbf{U}_{1-2} = \varphi_1 - \varphi_2 \tag{1},$

1 2 $\Delta\phi_{1-2}$: $\Delta\phi_{1-2}=\phi_2 - \phi_1$ ($\Delta\phi_{1-2};\Delta\phi_{A-B};U_{1-2})$

). ,

(1) (2) :

 $\mathbf{A}_{1-2} = \mathbf{q}(\varphi_1 - \varphi_2) = \mathbf{q}\mathbf{U}_{1-2}$ (2),

2

.

 \mathbf{A}_{1-2} = $\mathbf{q}(\varphi_2 \cdot \varphi_1) = \mathbf{q} \Delta \varphi_{1-2}$ (3),

 $\mathbf{A}_{1-2} = -\mathbf{A}_{1-2} \tag{4},$

-

· , (2) - (4)

 $q = -3*10^{-8}$, $q = -3*10^{-8}$.,

1. (1) (2)

 \mathbf{A}_{1-2}

 $\varphi_1 - \varphi_2 = \frac{}{\mathbf{q}} \tag{5},$

, , ,

 $U_{1,2} = 0 \cdot 0_2$

, $\mathbf{A}_{1-2} \sim \mathbf{q}$, $\varphi_1 \cdot \varphi_2$ \mathbf{q} (

·

2. . 1-2

· , , , ,

 $E_{1-2} = \frac{\mathbf{A}_{1-2}}{} \tag{6},$

q

```
, A_{1-2} \sim q \,, \quad \textit{E}_{1-2}
                      E_{1-2}
(
                                                                                  .1)
                                      2).
                               1
                                                        E_1
                                                                       R1
                                                                                                 . 1
                                                        E_2
                                                                       R2
\boldsymbol{U_{1\,-2}} = \boldsymbol{\phi}_1 - \boldsymbol{\phi}_2
                                                                                                          (7),
                           E_{1-R1-2} E_{1-R2-2}
                                                                                                          (8).
                            U_{1-R1-2} = U_{1-R2-2}
                                          3.
                                                              A_{1-2}
                                                              q
       \mathbf{A}_{1-2}
                           q
       ).
                                                                                                                        (10).
                            (5),(6),(9) (10),
                                                                                                                :
                                             _{1-2} = (\varphi_1 - \varphi_2) + E_{1-2}
                                                                                                            (11)
                                                                               \mathbf{U_{1-2}} = \phi_1 - \phi_2
                                                                                                            . . . - E_{1-2}.
                                   1-2,
                             (11)
                               (
                                                        ),
   ).
          a)
                                                                                                                     -E_{1-2} = 0
                                             _{1-2} = \phi_1 - \phi_2 = U_{1-2}
                                                                                                             (12)
```

) $E_{1-2} = 0$ (. . . 2)

. 2

 $_{1-2} = \varphi_1 - \varphi_2 = _{1-R1-2} = _{1-R2-2} = _{1-R3-2}$ (13)

(13)

, . .

$$\mathbf{1}_{-\mathbf{R}\mathbf{1}-2} = \varphi_{1} - \varphi_{2} + E_{1-\mathbf{R}\mathbf{1}-2} = \varphi_{1} - \varphi_{2}
\mathbf{1}_{-\mathbf{R}\mathbf{2}-2} = \varphi_{1} - \varphi_{2} + E_{1-\mathbf{R}\mathbf{2}-2} = \varphi_{1} - \varphi_{2} + E_{2}
\mathbf{1}_{-\mathbf{R}\mathbf{3}-2} = \varphi_{1} - \varphi_{2} + E_{1-\mathbf{R}\mathbf{3}-2} = \varphi_{1} - \varphi_{2} - E_{3}$$
(14)

 $E_{1-R2-2} = E_2 > 0$, . . 1-2 E_2 ,

 $E_{1-R3-2} = -E_3 < 0, \dots E_3,$

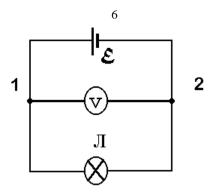
"-" "+" (), $_{1-2} > 0$, $_{E_{1-2}} < 0$, ")

(14) : 1.

. 2. <u>+</u> E

5 3. $_{1-2} = \phi_1 - \phi_2 = U_{1-2}$ 4. $E_{1-2} = \pm E$. 5. 1 - 2 1 2. 6. $_1 = _2 = _3$ 7. $\varphi_1 - \varphi_2 = U_1 = U_2 = U_3$. 4.

 ϕ_1 - $\phi_2 = \mathbf{U_{1-2}}$,


) (. . .4),

2, . .

. $3. \qquad - \qquad , \\ U_{1-2} = \ _{1-2} \qquad \qquad (\qquad \qquad 1\text{-R}_{1}\text{-2})$

4.

 $_{1-2} = \varphi_1 - \varphi_2 + E,$ $IR = _{1-2}.$

?

1. 2. 3. ? .?

. 5

 $_{1-2}$; E_{1-2} ; U_{1-2} (\Rightarrow), черный R₁₋₂ ящик 2

$$I_{1-2} = \frac{1-2}{R_{1-2}} \tag{15}$$

1 - R₁₋₂ - 2 - R_{1-2} .

E .

7 1. → h -2 R $E_{1-2} = 0$, $I_{1-2} = \varphi_1 - \varphi_2$ (15) ϕ_1 - ϕ_2 (16) $I_{1-2} =$ R_{1-2} 2. рис б) рис а) $1-2 = \varphi_1 - \varphi_2 + E_{1-2}$ $R_{1-2} = r + R$ $\varphi_1 - \varphi_2 + E_{1-2}$ *I*_{1-2 = --} (17)) E_{1-2 = +}E) E _{1-2 =} -E

R

" - 2 $\varphi_1 = \varphi_2 \\
E_{1-2} = E_{\mathfrak{g}}$ (15)

E_{1-2}	
I _{1-2 =}	(18)
R_{1-2}	